

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu, S. X. Wang, L. Zhang, J. X. Song, H. Yang, and Y. Meng

School of Environment, and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China

Received: 30 May 2012 – Accepted: 3 July 2012 – Published: 24 July 2012

Correspondence to: S. X. Wang (shxwang@tsinghua.edu.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

China is the largest anthropogenic mercury emitter in the world, where primary non-ferrous metal smelting process is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China during 2000–2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting process, mercury removal efficiencies of air pollution control devices (APCDs) and installation rate of a certain type of APCD combination. Our study indicated that atmospheric mercury emission from nonferrous metal smelters in 2000, 5 2003, 2005, 2007 and 2010 was 67.6, 100.1 86.7 80.6 and 72.5 t, respectively. In 10 2010, the mercury in metal concentrates consumed by primary zinc, lead and copper smelters were 543 t. The mercury emitted into atmosphere, fly ash, other solids, waste water and acid was 72.5, 61.5, 2.0, 3774 and 27.2 t, respectively. Mercury retrieved directly from flue gas as byproduct of nonferrous metal smelting was about 2.4 t. 15 The amounts of mercury emitted into atmosphere were 39.4, 30.6 and 2.5 t from primary zinc, lead and copper smelters, respectively. The largest amount of mercury was emitted from Gansu province, followed by Henan, Yunnan, Hunan, Inner Mongolia and Shaanxi provinces. The average mercury removal efficiency was 90.5 %, 71.2 % and 91.8 % in zinc, lead, and copper smelters, respectively.

20 1 Introduction

Researches on atmospheric mercury emission from major sources have been intensively carried out in the past several years due to worldwide concern on mercury contamination (Strode et al., 2009; Li et al., 2009, 2012; Lin et al., 2010; Wu et al., 2010; Tian et al., 2010; Kocman et al., 2011; Fukuda et al., 2011). Nonferrous metal smelting process is believed to be one of the most significant anthropogenic mercury emission sources in the world. Global atmospheric mercury emission from nonferrous metal

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

smelters reached 310 t, of which about 203 t was emitted from China in 2007 (Streets et al., 2005; Wu et al., 2006; Hylander and Herbert, 2008; Pirrone et al., 2010; Wang et al., 2010).

The main factors affecting atmospheric mercury emission from nonferrous metal smelters include mercury concentration in ore concentrate, smelting technology, the type of APCD combination applied and the installation rate of a certain type of APCD combination. Current inventories about atmospheric mercury emission from China's zinc, lead and copper smelters are subject to high uncertainty due to the following reasons.

First, mercury content in ore concentrates was reported over a wide range and there were few data about mercury concentration in Chinese concentrates. Global results about mercury content in concentrates from Brook Hunt indicated that the maximum are 6000, 325 and 1500 gt^{-1} for zinc, lead and copper concentrates, respectively, while the minima are all less than 1 gt^{-1} (Hylander and Herbert, 2008). However, no data about China's mines were collected in this report. Streets et al. (2005) reported that mercury concentration in Chinese zinc concentrates varied from less than 1 gt^{-1} to more than 1000 gt^{-1} . Yin et al. (2012) pointed out that such wide range depended on the ore types and their geneses. Data about mercury concentration in Chinese lead and copper concentrates are scarce.

Second, results from field measurement about mercury removal efficiency of APCDs were limited in previous inventories. Mercury removal efficiencies were estimated on the basis of sulfur abatement technology. About 99 % of gaseous mercury was estimated to be removed from flue gas in copper smelters with double-contact sulfuric acid plants or in zinc/lead smelters with both double-contact plants and mercury removal tower. Mercury removal efficiency was regarded as 95 % for copper smelters with single-contact sulfuric acid plants or zinc/lead smelters with sulfuric acid plants (Hylander and Herbert, 2008). In order to reduce the uncertainty of mercury emission inventory, field measurements have been conducted in China's zinc, lead and copper smelters in the past several years. The total mercury removal efficiency for tested

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

smelters is from 99.2% to 99.8% (Li et al., 2010; Wang et al., 2010; Zhang et al., 2012).

Third, various smelting processes and APCDs are used in China's smelters and they have been improved in the past decade because of the stringent regulations for environmental protection. Therefore, the emission factors used in previous studies will not apply to current situation since installation rate of the types of APCD combinations in smelters have been undergoing change. Streets et al. (2005) adopted the average mercury emission factors of 86.6, 43.6 and 9.6 gt^{-1} for zinc, lead and copper, respectively, mainly based on the average mercury concentration in concentrates without consideration of APCDs. Hylander and Herbert (2008) estimated the emission factors of 16.61, 14.91 and 6.72 gt^{-1} for zinc, lead and copper smelters, respectively, in the global inventory of 2005 for China's nonferrous metal smelters. However, the increased installation rate of acid plants after 2005 indicates that these emission factors are not applicable to China.

15 In this paper, nationwide as well as imported concentrates have been sampled and
analyzed for mercury content. Up-to-date mercury removal efficiencies in existing litera-
tures have been summarized and applied in this study. Moreover, information on smelt-
ing technologies as well as APCDs has been investigated nationwide. A technology-
based method with comprehensive consideration of the above factors is used to esti-
20 mate atmospheric mercury emissions from primary zinc, lead and copper smelters in
China during 2000–2010.

2 Methodology

25 Various smelting processes are used in China's nonferrous metal smelters. Zinc smelting processes include oxygen pressure leaching process (OPLP), electrolytic process (EP), imperial smelting process (ISP), retort zinc smelting process (RZSP) or electric zinc furnace (EZF). There is no atmospheric mercury emission from OPLP since it is a hydrometallurgical process and mercury in ore concentrate is released into water

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

11

◀

1

10

10 of 10

Editorial Team • [About the Editors](#)

Interactive Discussion

Title Page	Abstract	Introduction
Conclusions	References	
Tables	Figures	
◀	▶	
◀	▶	
Back	Close	
Full Screen / Esc		
	Printer-friendly Version	
	Interactive Discussion	

or solid waste. Lead smelting processes can be divided into four major types, namely rich-oxygen pool smelting process (RPSP), imperial sinter process (ISP), sinter machine process (SMP), and sinter pan or pot process (SPP). Copper smelting processes include flash furnace smelting process (FFSP), rich-oxygen pool smelting process (RPSP), imperial furnace smelting process (IFSP), roasting-leaching-electrolyzing process (RLEP) as well as the old technologies that were forbidden by Chinese government such as electric furnace smelting process (EF) and reverberatory furnace smelting process (RF).

2.1 Mercury input model

In all the above processes, although additives, such as quartz stone, limestone, also contain limited mercury, ore concentrate is the main source of mercury input. Mercury input Q for smelters with j technology in i province can be calculated using the following equation.

$$Q_{ij} = [\text{Hg}]_{\text{com},ij} C_{\text{com},ij} = \sum_k [\text{Hg}]_{\text{su},k \rightarrow ij} C_{\text{su},k \rightarrow ij} \quad (1)$$

where, $[\text{Hg}]_{\text{com},ij}$ and $C_{\text{com},ij}$ are mercury content and amount of the ore concentrates consumed by j technology in i province; $[\text{Hg}]_{\text{su},k \rightarrow ij}$ and $C_{\text{su},k \rightarrow ij}$ are mercury content and supply of the ore concentrates produced in k province (or other countries) which are transported to i province and used by j technology for smelting. Concentrate supplies (see Table 1) are taken from the “Yearbook of nonferrous metals industry of China (2011)”. Information about concentrates consumption is from our survey (see Table 1).

In order to get the mercury content in ore concentrates, 351 zinc concentrate samples, 190 lead concentrate samples and 174 copper concentrate samples were collected from 118 zinc mines, 83 lead mines and 55 copper mines, respectively. Besides, 39 zinc concentrate samples, 8 lead concentrate samples and 33 copper concentrate samples were also collected from imported concentrates. The imported zinc concentrate samples were from America, Peru, Mexico, Australia, India and Sweden. Imported

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

tively, in 2010; while the corresponding results are 47.02, 16.81 and 2.82 gt^{-1} , respectively, in 2005.

2.2 Mercury emission model

Mercury in ore concentrates is released in the form of gaseous mercury during pyrometallurgical extraction process and parts of them are captured by APCDs and enter into waste water, acid or fly ash. Usually, pyrometallurgical extraction of nonferrous metals from concentrate requires dehydration, smelting/roasting, extraction and reclaiming/refining. Total atmospheric mercury emission from one smelter includes the sum of emission from the above four procedures. Mercury emission from smelting flue gas, excluding overflow flue gas, is called as primary flue gas emission (E_p). Mercury emission from dehydration, overflow, extraction and refining/reclaiming flue gas is regarded as other emission (E_o). The atmospheric mercury emission for smelters with j technology in i province can be calculated with the following equation.

$$E_{ij} = E_{p,ij} + E_{o,ij} \quad (2)$$

The mercury removal effect of APCDs has been proved in previous studies (Wang et al., 2010; Li et al., 2010; Zhang et al., 2012). Broadly speaking, APCDs for primary flue gas in most nonferrous metal smelters consist of dust collectors (DC) including cyclone dust collector, waste heat boiler, electrostatic precipitator and fabric filter (or their combination), flue gas scrubber (FGS), electrostatic demister (ESD), mercury reclaiming tower (MRT), and conversion and absorption tower (CAT). The CAT can be further divided into double conversion double absorption (DCDA) tower and single conversion single absorption tower (SCSA). The information of APCDs in most smelters is provided by Chinese nonferrous metal industry association or collected through literature research and field investigation. The proportion of metal production from smelters with different types of APCDs is given in Table 4. Combining the effect of APCDs and mercury flow diagram in smelters (Fig. 2), atmospheric mercury emission from primary flue

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

gas is calculated with the following equation.

$$E_{p,ij} = \sum_l \theta_{l,ij} Q_{ij} (1 - \gamma_{d,j}) \gamma_{s,j} (1 - \xi_{of,j}) (1 - \eta_l) \quad (3)$$

where E is atmospheric Hg emission (kg); Q is mercury input (kg); p refers to primary smelting flue gas; i refers to province; j refers to technology; of refers to overflow flue

5 gas; d refers to dehydration sector; l is the type of APCD combinations (Table 4); γ is mercury release rate (Table 5); ξ is mercury distribution coefficient (Table 5); θ is installation rate of a certain type of APCD combinations (Table 6); η is mercury removal efficiency of APCD (Table 7).

For most processes, dust collectors are widely installed for dehydration, overflow, extraction and refining/reclaiming flue gas. In several large smelters with advanced smelting processes, desulfurization devices are installed for flue gas control. No APCDs are installed for the other flue gas in the out-of-date processes such as AZSP, RZSP and EF/RF. Thus, different mercury removal efficiencies for other flue gas are given according to the smelting processes applied (see Table 5).

$$15 \quad E_{o,ij} = E_{d,ij} + E_{of,ij} + E_{e,ij} + E_{r,ij} \\ = Q_{ij} \gamma_{d,j} (1 - \eta_{o,j}) \\ + Q_{ij} (1 - \gamma_{d,j}) \gamma_{s,j} \xi_{of,j} (1 - \eta_{o,j}) \\ + Q_{ij} (1 - \gamma_{d,j}) (1 - \gamma_{s,j} - \xi_{ss,j}) \gamma_{e,j} (1 - \eta_{o,j}) \\ + Q_{ij} (1 - \gamma_{d,j}) (1 - \gamma_{s,j} - \xi_{ss,j}) (1 - \gamma_{e,j} - \xi_{se,j}) \gamma_{r,j} (1 - \eta_{o,j}) \quad (4)$$

20 where o refers to other flue gas; d , s , e , r refers to dehydration, smelting/roasting, extraction and refining/reclaiming, respectively. Q is mercury input (kg); ξ is called as distribution coefficient (Table 5); ξ_{ss} and ξ_{se} here refers to the proportion of mercury flows into the solids that are not sent to the next sector in smelting and extraction 25 sector, respectively (Table 5); η_o is the mercury removal efficiency for other flue gases (see Table 5).

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Atmospheric mercury emission from i province is calculated by

$$E_i = \sum_j E_{ij} \quad (5)$$

Atmospheric mercury emission from j process is calculated by

$$E_j = \sum_i E_{ij} = EF_j \times M_j = EF_j \times \sum_i C_{\text{com},ij} \times \alpha_j \times \varphi_j \quad (6)$$

5 Thus, the average emission factor for j process is

$$\begin{aligned} EF_j = & \frac{1}{\sum_i C_{\text{com},ij} \times \alpha_j \times \varphi_j} \times \left[\sum_i \sum_l Q_{ij}(1 - \gamma_{d,j})\gamma_{s,j}(1 - \xi_{of,j})\theta_{l,ij}(1 - \eta_l) \right. \\ & + \sum_i Q_{ij}\gamma_{d,j}(1 - \eta_{o,j}) + \sum_i Q_{ij}(1 - \gamma_{d,j})\gamma_{s,j}\xi_{of,j}(1 - \eta_{o,j}) \end{aligned} \quad (7)$$

$$\begin{aligned} & + \sum_i Q_{ij}(1 - \gamma_{d,j})(1 - \gamma_{s,j} - \xi_{ss,j})\gamma_{e,j}(1 - \eta_{o,j}) \\ & \left. + \sum_i Q_{ij}(1 - \gamma_{d,j})(1 - \gamma_{s,j} - \xi_{ss,j})(1 - \gamma_{e,j} - \xi_{se,j})\gamma_{r,j}(1 - \eta_{o,j}) \right] \end{aligned} \quad (8)$$

10

where α is metal concentration (Table 5); φ is metal recovery rate of smelting process (Table 5).

15 Mercury captured by dust collector deposits on particles and remains in the fly ash. Some mercury is washed by water in the FGS or ESD while some of them flow into the sulfuric acid in the CAT. A limited part of them is recovered from flue gas in the form of calomel as byproduct. There is still trace amount of them remaining in other solids, including sludge and byproduct.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

3 Results and discussion

3.1 Mercury fate in China's nonferrous metal smelters

In 2010, total mercury input into China's primary nonferrous metal smelters with the consumption of ore concentrates in 2010 was 543 t, of which 74.8 %, 19.5 % and 5.7 % was input into zinc, lead and copper smelters, respectively. At the same time, with continuous expansion of smelter capacity and increased production, concentrates import become one way to solve China's shortage of concentrates. Thus, about 17.5 t of mercury from other countries entered into China's nonferrous metal smelters due to concentrates trade, in which 75.4 %, 15.9 % and 8.7 % went into zinc, lead and copper smelters in 2010. The amounts of mercury in the metal concentrates consumed by each province in 2010 were shown in Fig. 3. The mercury inputs in Gansu, Shaanxi and Yunnan province were much larger than that in other province due to the high mercury contents in their zinc concentrates.

The mercury in ore concentrate is either adsorbed on fly ash, dissolved in the waste water or acid, recovered as a byproduct, emitted into atmosphere or remained in other solids. The mercury emitted into atmosphere, fly ash, other solids (sludge or byproduct), water and acid in 2010 was 72.5, 61.5, 2.0, 377.4 and 27.2 t, respectively. The distribution of mercury output for zinc, lead and copper smelters is shown in Fig. 4. More than 50 % of mercury went into water in all of these three kinds of smelters. Mercury in fly ash and sulfuric acid was about 10 % and 5 %, respectively. Mercury in other solids was less than 2 %. There was no mercury recovered from flue gas in lead and copper smelters, while about 2.4 t of mercury was retrieved in the form of calomel as byproduct in zinc smelters. The percentage of mercury emitted into atmosphere in lead smelters was 29.0 %, much higher than that in zinc and copper smelters.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

3.2 Provincial atmospheric mercury emission from primary smelters in 2010

In 2010, mercury emitted into atmosphere was about 72.5 t from China's primary non-ferrous metal smelters. Emission from primary zinc, lead and copper smelters was 39.4, 30.6 and 2.5 t, respectively. The largest mercury emitter was Gansu province, followed by Henan, Yunnan, Hunan, Inner Mongolia and Shaanxi provinces. Summation of the emission from these six provinces accounted for 87.9 % of the national emission (Fig. 5).

China's zinc smelters emitted 39.4 t of mercury into atmosphere in 2010. Gansu, Yunnan, Shaanxi and Henan provinces were the top four emitters. For zinc smelters, summation of mercury emission from these four provinces accounted for 80.5 % of national amount. High mercury content of zinc concentrate consumed was the main reason for the high mercury emission in Gansu and Shaanxi province. For example, mercury concentration in the concentrates consumed by zinc smelters in Gansu province was as high as 403.4 g t^{-1} , which is about 10 times higher than the national average. Thus, total mercury input into zinc smelters reached 181 t in Gansu province. If national average was used, this value would be only 18 t. High mercury emission in Yunnan and Henan is caused by the low installation rate of acid plants, which is only 79.3 % and 48.5 %, respectively.

Atmospheric mercury emission from lead smelters was about 30.6 t. Mercury emission from China's lead smelters was mainly from Henan, Hunan, Yunnan and Inner Mongolia. The emissions of these four provinces accounted for 89.6 % of total emission from lead smelters. Huge concentrates consumption, more than 60 % of national consumption, was the most important factor for the high mercury emission from lead smelters in Hunan and Henan. High mercury concentration in the concentrates consumed in Inner Mongolia contributed to its high emission while low mercury removal efficiency led to the high emission in Yunnan's lead smelters.

Copper smelters emitted 2.5 t of mercury in 2010 and nearly half was emitted in Yunnan province. High mercury content of copper concentrates consumed in local smelters

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

was the main reason for the large mercury emission in Yunnan province. Mercury content in the ore concentrates consumed by smelters in Yunnan province was 8.7 gt^{-1} , about four times of the national average (2.3 gt^{-1}).

3.3 Atmospheric mercury emission from various smelting processes in 2010

5 In 2010, China's production of zinc, lead and copper from primary smelters reached 5033, 2794 and 2921 kt, respectively. For primary zinc smelters, about 2.5 % of refined zinc is produced with hydrometallurgical process. Refined zinc produced by EP, ISP, RZSP, EZF and others, accounted for 78.7 %, 7.1 %, 7.9 %, 1.3 % and 2.5 % of total zinc production, respectively. For primary lead smelters, the percentages of lead 10 produced by RPSP, ISP, SMP and SPP were 47.3 %, 5.1 %, 20.2 % and 27.4 %, respectively. Refined copper produced by FFSP, RPSP, IFSP, RLEP and EF/RF, accounted for 34.2 %, 52.4 %, 9.8 %, 0.2 % and 3.4 %, respectively.

For zinc smelters, most of mercury is emitted from smelters with EP. Mercury emission from RZSP, EZF, ISP and AZSP was 6.3 %, 2.4 %, 5.4 % and 14.4 %, respectively.

15 For lead and copper smelters, more than half of mercury was emitted from smelters with out-of-date technologies (Fig. 6). Besides, the average mercury removal efficiency of air pollution control devices in zinc, lead and copper smelters was 90.5 %, 71.2 % and 91.8 %. The mercury emissions can be further reduced by improving the mercury removal efficiencies of current APCDs or installing mercury reclaiming tower.

20 3.4 Historical changes of mercury emission from primary nonferrous metal smelters

According to our estimation, atmospheric mercury emission from nonferrous metal smelters in 2000, 2003, 2005, 2007 and 2010 was 67.6, 100.1, 86.7, 80.6, and 72.5 t, respectively. At the same time, the refined metal production from primary smelters 25 has been increasing from 3909 kt to 4958, 6460, 8190 and 10749 kt, respectively (see Figs. 7, 8). The increased application of acid plants was the main reason for atmo-

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

lead and copper production from smelters with acid plants reached 87.8 %, 65.5 % and 95.6 %.

Mercury emission was further reduced after 2010 because of “the 12th five year national plan for comprehensive prevention and control of heavy metal pollution”. In this plan, China has set up a target that in 2015, the mercury emission in key areas will be reduced 15 % on the basis of 2007 emission level and mercury emission in other areas will be kept at the emission level of 2007.

3.5 Comparison with previous studies

In previous mercury emission inventory studies, emission factor method was used and the difference of mercury emissions was mainly caused by the uncertainty of emission factor (Tables 8, 9). In earlier estimates, the mercury emission factor for China's nonferrous metal smelters was regarded as same as that for other countries (Nriagu et al., 1988; Pacyna et al., 1996). Pirrone et al. (1996) assumed the mercury emission factors for zinc and lead smelters in developing continents to be 25 and 3 gt^{-1} metal produced, respectively. But there were no data for developing countries including China. Wu et al. (2006) and Wang et al. (2006) analyzed the mercury content in concentrates and estimated the mercury emission factor to be 86.6, 43.6 and 9.6 gt^{-1} for zinc, lead and copper smelters, respectively. However, these values were proved to be overestimated since the synergistic mercury removal effect of APCDs was not considered (Feng et al., 2004; Li et al., 2010; Wang et al., 2010; Zhang et al., 2012).

According to the research by Hylander and Herbert (2008), the total atmospheric mercury emission from China's zinc, lead and copper smelters reached to 83 t in 2005, which is similar to our estimation. However, the emissions from each of the three sectors in these two inventories are quite different (Fig. 8), which is mainly caused by the difference of mercury content in ore concentrates consumed by smelters. National average of mercury content in zinc, lead and copper concentrates consumed by smelters reached to 47.02, 16.81 and 2.82 gt^{-1} , respectively. However, global mercury concentration of 10, 9 and 3.5 gt^{-1} for zinc, lead and copper concentrates was used in the

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

former study. Besides, the application rate of acid plants in 2005 was about 76.3 %, 43.7 % and 70.5 % for zinc, lead and copper smelters (Fig. 9), which was also higher than Hylander and Herbert's estimation. Even in some zinc or lead smelters without acid plant, FGS or other desulfurization devices are installed for air pollution control, of which mercury removal efficiency is higher than 10 %.

4 Conclusion

In this paper, we have presented an updated estimate of mercury emissions from non-ferrous metal smelters using a detailed technology-based methodology specifically for China. We estimate that the mercury emission from zinc, lead and copper smelters in China increased by 48.1 %, from 67.6 t in 2000 to 100.1 t in 2003. After 2003, the mercury emission decreased 27.6 %, from 100.1 t in 2003 to 72.5 t in 2010 although the production of zinc, lead and copper increased 116.7 % at the same period. The mercury reduction is mainly because of the improvement of smelting process and the increase of application rate of acid plants, from 60.9 %, 30.7 % and 61.0 % in 2003 to 87.8 %, 65.5 % and 95.6 % in 2010 for zinc, lead and copper smelters, respectively.

In 2010, the mercury emitted into atmosphere, fly ash, waste water, sulfuric acid, and other solids (sludge or byproduct), was 72.5, 61.5, 377.4, 27.2 and 2.0 t, respectively. Mercury retrieved directly from flue gas as byproduct of nonferrous metal smelting was 2.4 t. The amounts of mercury emitted into atmosphere were 39.4, 30.6 and 2.5 t from primary zinc, lead and copper smelters. The average mercury removal efficiency of air pollution control devices in zinc, lead and copper smelters was 91 %, 71 % and 92 %, respectively.

With the deepening understanding of mercury fate in nonferrous metal smelters, atmospheric mercury emission estimates based on techniques and mercury abatement devices lower the estimation uncertainty. However, mercury removal efficiency is still in wide range according to current studies and mercury removal mechanism of APCDs is still unclear.

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Acknowledgements. This work was financially supported by the Natural Science Foundation of China (No. 20 937 002), MEP's Special Funds for Research on Public Welfares (201209015), and Government of Norway.

References

5 Dong, S. L.: Review of nonferrous metallurgy and off-gas acid production during the tenth five-year period and prospect for development trend during the eleventh five-year period, *Sulphur. Acid Indus.*, 1, 1–7, 2007.

10 Feng, X. B., Li, G. H., and Qiu, G. L.: A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang county, Guizhou, China – part 1: mercury emission from zinc smelting and its influences on the surface waters, *Atmos. Environ.*, 38, 6223–6230, 2004.

15 Fukuda, N., Takaoka, M., Doumoto, S., Oshita, K., Morisawa, S., and Mizuno, T.: Mercury emission and behavior in primary ferrous metal production, *Atmos. Environ.*, 45, 3685–3691, 2011.

20 Guo, Z. S. and Huang, W. H.: Present situation and development prospect of metallurgical acid production technologies, *Sulphur. Acid Indus.*, 2, 13–21, 2007.

25 Hylander, L. D. and Herbert, R. B.: Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores, *Environ. Sci. Technol.*, 42, 5971–5977, 2008.

30 Kocman, D. and Horvat, M.: Non-point source mercury emission from the Idrija Hg-mine region: Gis mercury emission model, *J. Environ. Manage.*, 92, 2038–2046, 2011.

35 Li, G. H., Feng, X. B., Li, Z. G., Qiu, G. L., Shang, L. H., Liang, P., Wang, D. Y., and Yang, Y. K.: Mercury emission to atmosphere from primary Zn production in China, *Sci. Total Environ.*, 408, 4607–4612, 2010.

40 Li, G. H.: Preliminary studies on zinc smelting emission Hg to atmosphere and its effect to the environment in China, PhD thesis, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, 154, 2007.

45 Li, P., Feng, X. B., Qiu, G. L., Shang, L. H., and Li, Z. G.: Mercury pollution in Asia: a review of the contaminated sites, *J. Hazard. Mater.*, 168, 591–601, 2009.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Lin, H. C.: Production of sulfuric acid with flue from nonferrous metal smelters, *Min. Metal.*, 10, 58–61, 2001.

Lin, C.-J., Pan, L., Streets, D. G., Shetty, S. K., Jang, C., Feng, X., Chu, H.-W., and Ho, T. C.: Estimating mercury emission outflow from East Asia using CMAQ-Hg, *Atmos. Chem. Phys.*, 10, 1853–1864, doi:10.5194/acp-10-1853-2010, 2010.

5 NDRC (National Development and Reform Commission): Requirements for new smelters construction in copper industry, available at: http://www.ndrc.gov.cn/zcfb/zcfbgg/gg2006/t20060721_77236.htm, last access: 17 July 2012, 2006.

10 NDRC: Requirements for new smelters construction in lead/zinc industry, available at: http://www.ndrc.gov.cn/zcfb/zcfbgg/2007gonggao/t20070316_121733.htm, last access: 17 July 2012, 2007.

Nriagu, J. O. and Pacyna, J. M.: Quantitative assessment of worldwide contamination of air, water and soils by trace-metals, *Nature*, 333, 134–139, 1988.

15 Pacyna, E. G. and Pacyna, J. M.: Global emission of mercury from anthropogenic sources in 1995, *Water Air Soil Pollut.*, 137, 149–165, 2002.

Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., and Wilson, S.: Global anthropogenic mercury emission inventory for 2000, *Atmos. Environ.*, 40, 4048–4063, 2006.

Pirrone, N., Keeler, G. J., and Nriagu, J. O.: Regional differences in worldwide emissions of mercury to the atmosphere, *Atmos. Environ.*, 30, 2981–2987, 1996.

20 Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources, *Atmos. Chem. Phys.*, 10, 5951–5964, doi:10.5194/acp-10-5951-2010, 2010.

25 Streets, D. G., Hao, J. M., Wu, Y., Jiang, J. K., Chan, M., Tian, H. Z., and Feng, X. B.: Anthropogenic mercury emissions in China, *Atmos. Environ.*, 39, 7789–7806, 2005.

Strode, S., Jaegle, L., and Selin, N. E.: Impact of mercury emissions from historic gold and silver mining: global modeling, *Atmos. Environ.*, 43, 2012–2017, 2009.

30 The Editorial Board of Chinese Nonferrous Metal Industry Association: The Yearbook of Non-ferrous Metals Industry of China, Chinese Nonferrous Metal Industry Association, Beijing, China, 2011.

The State Council of the People's Republic of China: Notice on further strengthening the work of eliminating out-of-date production capacity, available at: http://www.gov.cn/zwgk/2010-04/06/content_1573880.htm, last access: 17 July 2012, 2010.

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Tian, H. Z., Wang, Y., Xue, Z. G., Cheng, K., Qu, Y. P., Chai, F. H., and Hao, J. M.: Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007, *Atmos. Chem. Phys.*, 10, 11905–11919, doi:10.5194/acp-10-11905-2010, 2010.

5 Wang, S. X., Liu, M., Jiang, J. K., Hao, J. M., Wu, Y., and Streets, D. G.: Estimate the mercury emissions from non-coal sources in china, *Chinese Environ. Sci.*, 27, 2401–2406, 2006.

Wang, S. X., Song, J. X., Li, G. H., Wu, Y., Zhang, L., Wan, Q., Streets, D. G., Chin, C. K., and Hao, J. M.: Estimating mercury emissions from a zinc smelter in relation to China's mercury control polices, *Environ. Pollut.*, 158, 3347–3353, 2010.

10 Wu, C. L., Cao, Y., Dong, Z. B., Cheng, C. M., Li, H. X., and Pan, W. P.: Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler, *J. Environ. Sci.*, 22, 277–282, 2010.

15 Wu, Y., Wang, S. X., Streets, D. G., Hao, J. M., Chan, M., and Jiang, J. K.: Trends in anthropogenic mercury emissions in China from 1995 to 2003, *Environ. Sci. Technol.*, 40, 5312–5318, 2006.

Yin, R. S., Feng, X. B., Li, Z. G., Zhang, Q., Bi, X. W., Li, G. H., Liu, J. L., Zhu, J. J., and Wang, J. X.: Metallogeny and environmental impact of Hg in Zn deposits in China, *Appl. Geochem.*, 27, 151–160, 2012.

20 Zhang, C.: Technology progress in domestic sulphuric acid industry during the ninth five-year plan, *Liaoning Chem. Indus.*, 30, 526–530, 2001.

Zhang, L., Wang, S. X., Wu, Q. R., Meng, Y., Yang, H., Wang, F. Y., and Hao, J. M.: Onsite measurements of mercury emissions from zinc, lead and copper smelters in China, accepted, *Environ. Pollut.*, 2012.

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Table 1. Supply and consumption of ore concentrates.

Region	Concentrates supply (metallic, kt)			Concentrates consumption (metallic, kt)		
	Zinc	Lead	Copper	Zinc	Lead	Copper
Anhui	13.46	13.04	128.21	1.91	76.16	526.68
Beijing	23.89					
Chongqing						
Fujian	147.45	74.77	10.04	10.82		
Gansu	202.93	47.59	73.74	248.99	42.31	593.78
Guangdong	193.97	126.76	9.22	270.89	87.05	
Guangxi	337.43	237.94	7.42	515.75	112.92	27.19
Guizhou	25.61	23.45		21.98		
Hainan						
Hebei	37.60	13.69	1.72			13.30
Heilongjiang			2.14			
Henan	59.90	69.52	7.27	290.80	1153.12	5.13
Hong Kong						
Hubei			54.59			203.51
Hunan	583.02	283.40	6.44	1260.13	640.48	12.41
Inner Mongolia	750.11	443.48	170.29	389.42	107.50	236.60
Jiangsu	21.09	15.09	1.39			
Jiangxi	55.17	46.97	207.54	1.95	67.88	497.35
Jilin	22.04	41.90	16.30			12.27
Liaoning	47.39	18.88	11.56	402.47	27.80	24.75
Macao						
Ningxia				6.10		
Qinghai	83.66	67.55	39.77	99.36	57.91	
Shaanxi	211.26	52.19	8.64	579.53	103.62	3.07
Shandong			10.11			261.23
Shanghai						
Shanxi		12.69	27.19	0.43		68.11
Sichuan	367.12	208.23	71.89	254.07		41.33
Taiwan						
Tianjin						
Xinjiang	26.10	12.48	74.15	1.44		
Xizang	26.33	28.08	5.40			7.36
Yunnan	560.22	106.73	201.34	916.17	379.37	307.69
Zhejiang	46.43	36.89	9.49	35.41		46.80
National	3842.18	1981.33	1155.83	5301.52	2862.21	2888.56
Other countries	1459.34	880.88	1732.73			

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)**Table 2.** Mercury content in ore concentrates produced in each province or from other countries.

Region	Geometric mean (gt ⁻¹)	Zinc Standard deviation (gt ⁻¹)	Number of mines	Geometric mean (gt ⁻¹)	Lead Standard deviation (gt ⁻¹)	Number of mines	Geometric mean (gt ⁻¹)	Copper Standard deviation (gt ⁻¹)	Number of mines
Anhui	4.1		1	14.66	64.85	2	0.34	1.06	4
Chongqing				114.91		1			
Fujian	0.54	1.77	11	12.63	26.37	4			
Gansu	499.91	511.8	9	10.77	3.54	3	2.86	14.03	4
Guangdong	72.16	144.36	3	43.75	50.15	3	0.05		1
Guangxi	9.34	48.31	9	10.13	55.59	12	0.62	1.1	3
Heilongjiang				25.67		1			
Henan	4.96	4.4	4	2.25	17.98	7			
Hubei				6.86		1	0.99	3.2	6
Hunan	4.72	21.86	26	1.31	2.07	11			
Inner Mongolia	2.16	9.21	6	62.21	27.89	4	1.84	0.24	2
Jiangsu	13.29	18.73	2	18.61	19.02	3	0.06		1
Jiangxi	1.47	3.15	10	19.51		1	4.66	16.5	7
Jilin				55.58	0.82	2			
Liaoning				61.04	29.92	6			
Qinghai				0.6	1.31	3	1.77		1
Shaanxi	240.77	701.15	12	45.14	45.83	3			
Shandong				4.92		1	1.5		1
Shanghai									
Shanxi				52.17		1	0.14	0.17	3
Sichuan	45.55	54.64	10	26.46	54.22	5	2.15	1.93	3
Xinjiang	16.86	54.62	3				2.02	19.57	7
Xizang	0.23		1	0.02		1			
Yunnan	10.98	30.98	6	21.54	2.28	3	13.68	41.42	12
Zhejiang	0.88	1.95	5	20.96	50.66	5			
National average	9.74	343.38	118	10.29	40.25	83	2.87	1.49	55
Other countries	9.04	59.80	10	3.16	2.60	3	0.88	2.85	9

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

Province	Mercury content (g t ⁻¹)			Province	Mercury content (g t ⁻¹)		
	Zinc	Lead	Copper		Zinc	Lead	Copper
Anhui	—	5.13	13.03	Jiangxi	1.47	22.06	9.81
Beijing	4.10	—	—	Jilin	—	—	55.58
Chongqing	—	—	—	Liaoning	8.07	42.47	37.85
Fujian	—	—	—	Macao	—	—	—
Gansu	0.54	10.77	5.06	Ningxia	—	62.21	—
Guangdong	403.39	39.91	—	Qinghai	8.44	0.60	—
Guangxi	33.15	6.92	25.56	Shaanxi	73.61	45.26	45.14
Guizhou	10.43	—	—	Shandong	—	—	3.16
Hainan	9.74	—	—	Shanghai	—	—	—
Hebei	—	—	9.11	Shanxi	9.04	—	24.06
Heilongjiang	—	—	—	Sichuan	58.35	—	26.46
Henan	—	19.78	10.22	Taiwan	—	—	—
Hong Kong	16.06	—	—	Tianjin	—	—	—
Hubei	—	—	16.91	Xinjiang	16.86	—	—
Hunan	—	14.33	2.20	Xizang	—	—	10.29
Inner Mongolia	8.98	62.21	22.18	Yunnan	17.66	15.21	14.38
Jiangsu	12.09	—	—	Zhejiang	0.88	—	9.26
National	40.27	20.03	2.25				

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Table 4. The proportion of metal production from smelters with different types of APCDs.

APCDs	Type of APCDs combination (l)	Zinc Production (kt)	Zinc Percentage (%)	Lead Production (kt)	Lead Percentage (%)	Copper Production (kt)	Copper Percentage (%)
DC + FGS + ESD + DCDA	1	3841.05	76.31	1720.57	61.58	2721.28	93.15
DC + FGS + ESD + MRT + DCDA	2	508.04	10.09	0.00	0.00	0.00	0.00
DC + FGS + ESD + SCSA	3	69.52	1.38	108.35	3.88	81.40	2.79
DC + FGS	4	37.24	0.74	179.67	6.43	18.09	0.62
DC	5	172.07	3.42	37.52	1.34	2.44	0.08
FGS	6	1.68	0.03	3.16	0.11	0.00	0.00
None*	7	275.10	5.47	744.68	26.65	98.12	3.36

* Smelters without detailed APCDs' information are treated as no APCDs.

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

Metal	Process	Mercury release rate			distribution coefficient			mercury removal efficiency	metal content	metal recovery rate
		γ_d (%)	γ_s (%)	γ_e (%)	γ_r (%)	ξ_{of} (%)	ξ_{ss} (%)	ξ_{se} (%)		
Zinc	EP	0.80 ^a	99.4 ^{a,c}	0.00	87.2 ^{a,b}	0.55 ^d	0.00	0.00	12.5 ^{a,b}	50.5 ^g
	EZF	0.45 ^d	99.4 ^d	59.1 ^d	0.00	0.55 ^d	0.00	0.00	12.5 ^{a,b}	50.5 ^g
	RZSP	0.45 ^d	99.4 ^d	59.1 ^d	0.00	0.55 ^d	0.00	0.00	0.00	50.5 ^g
	ISP	0.10 ^b	99.1 ^b	59.1 ^d	0.00	1.00 ^b	0.00	0.00	12.5 ^{a,b}	50.5 ^g
	AZSP	0.00	99.4 ^d	59.1 ^d	0.00	0.55 ^d	0.00	0.00	0.00	50.5 ^g
Lead	RPSP	0.00	98.9 ^b	60.1 ^b	93.7 ^b	0.55 ^d	0.02 ^b	2.40 ^b	34.7 ^b	62.8 ^g
	SMP	0.10 ^d	98.7 ^b	58.0 ^b	0.00	0.55 ^d	0.00	14.4 ^b	12.5 ^{a,b}	62.8 ^g
	ISP	0.10 ^b	99.1 ^b	59.1 ^d	0.00	1.00 ^b	0.00	0.00 ^b	12.5 ^{a,b}	62.8 ^g
	SPP	0.00	98.8 ^d	59.1 ^d	0.00	0.55 ^b	20.6	14.4 ^d	0.00	62.8 ^g
	FFSP	0.90 ^b	97.7 ^b	0.00 ^e	0.00	0.55 ^d	0.80 ^{b,f}	0.00	34.7	21.7 ^g
Copper	RPSP	0.00	98.1 ^b	0.00 ^e	99.9 ^d	0.10 ^b	1.80 ^{b,f}	0.00	12.5 ^{a,b}	21.7 ^g
	RE	0.00	97.9 ^d	0.00 ^e	0.00	0.55 ^d	1.30 ^d	0.00	12.5 ^{a,b}	21.7 ^g
	IFSP	0.45 ^d	97.9 ^d	0.00 ^e	99.9 ^d	0.55 ^d	1.30 ^d	0.00	12.5 ^{a,b}	21.7 ^g
	EF/RF	0.00	97.9 ^d	0.00 ^e	0.00	0.55 ^d	1.30 ^d	0.00	0.00	21.7 ^g

^a Wang et al. (2010).^b Zhang et al. (2012).^c Li et al. (2007).^d Estimated value.^e Smelting flue gas is mixed with extraction flue gas as primary flue gas in copper smelters. Smelting and extraction sector are regarded as one sector. Mercury release rate for primary flue gas includes that released from extraction process.^f Include mercury in extraction slag.^g The editorial board of Chinese nonferrous metal industry association, 2011.

Table 6. Installation rate of a certain type of APCD combinations in each province.

Process (<i>i</i>) The type of APCDs (<i>l</i>)	Installation proportion of certain type of APCDs, θ (%) [*]																						
	1	2	3	4	5	7	1	5	6	1	5	1	3	4	5	4	5	6	7	1	3	4	5
Anhui																	0	100	0	0			
Beijing																							
Chongqing																							
Fujian	100	0	0	0	0	0																	
Gansu	95	0	0	0	0	5	100	0	0								0	0	0	100			
Guangdong	100	0	0	0	0	0																	
Guangxi	90	0	0	9	1	0											38	53	3	7	63	14	23
Guizhou	87	0	0	0	0	13	0	75	25	0	1						0	0	0	100	0	0	
Hainan																							
Hebei																							
Heilongjiang																							
Henan	49	0	0	0	0	51											66	34	0	0	0	0	100
Hong Kong																							
Hubei																							
Human	55	45	0	0	0	0	0										89	0	0	0	100	0	0
Inner Mongolia	100	0	0	0	0	0											0	0	100	0	0	100	0
Jiangsu																							
Jilin																							
Liaoning	100	0	0	0	0	0											0	0	0	100	0	0	0
Macao																							
Ningxia																	0	0	0	100			
Qinghai	37	0	63	0	0	0	0										0	0	100	0	0	0	0
Shaanxi	97	0	1	0	2	0	0	100	0	0	100	0	0	0	0	0	0	0	0	100	0	0	0
Shandong																							
Shanghai																							
Shanxi	0	0	0	0	0	0	100													0	100	0	0
Sichuan	100	0	0	0	0	0	0	100	0	0	100	0	0	0	0	0	0	0	100	0	0	0	
Taiwan																							
Tianjin																							
Xinjiang																							
Xizang																							
Yunnan	87	0	1	0	12	0	79	21	0	0	100	0	0	100	0	0	0	0	100	0	0	0	
Zhejiang	100	0	0	0	0	0														100	0	0	0

* $0 \leq \theta \leq 1$, $\sum_l \theta_{l,ij} = 1$

Table 7. Mercury removal efficiency of APCD.

Reference APCD	Zhang et al. (2012), η (%)						Wang et al. (2010), η (%)	Li et al. (2010), η (%)	This study	
	Smelter 1	Smelter 2	Smelter 3	Smelter 4	Smelter 5	Smelter 6			Average	Standard deviation
DC	20.0	13.9	13.8	–	2.4	–	–	–	12.5	7.3
FGS	66.6	–	–	–	–	–	17.4	–	42.0	34.8
ESD	32.2	–	–	–	–	–	30.3	–	31.3	1.3
FGS + ESD	88.2	99.0	99.3	80.5	76.2	97.5	–	–	90.1	10.1
RT	–	–	–	–	–	–	87.5	91.4	89.5	2.8
DCDA	99.2	80.0	30.4	90.9	–	28.0	97.4	–	71.0	33.1
SCDA	–	–	–	–	52.3	–	–	–	52.3	–

Title Page	
Abstract	Introduction
Conclusions	References
Discussion Paper	
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Estimation year	Atmospheric mercury emission (t)				Reference
	Zinc	Lead	Copper	Total	
2000	161.4	48.0	12.7	222.1	Wu et al. (2006)
2000	44.23	17.99	5.40	67.63	This study
2001	173.0	54.3	13.7	241.0	Wu et al. (2006)
2002	178.5	57.8	14.8	251.1	Wu et al. (2006)
2002	80.7	—	—	—	Li et al. (2010)
2003	187.6	70.7	17.6	275.9	Wu et al. (2006)
2003	84.6	—	—	—	Li et al. (2010)
2003	73.08	20.88	6.11	100.08	This study
2004	97.1	—	—	—	Li et al. (2010)
2005	37.59	29.75	15.84	83.19	Hylander and Herbert (2008)
2005	97.4	—	—	—	Li et al. (2010)
2005	56.98	25.14	4.57	86.69	This study
2006	104.2	—	—	—	Li et al. (2010)
2006	107.7	—	—	—	Yin et al. (2012)
2007	—	—	—	203	Pirrone (2010)
2007	46.17	30.53	3.93	80.63	This study
2010	39.4	30.6	2.5	72.5	This study

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

◀

▶

◀

▶

Back

Close

Full Screen / Esc

Printer-friendly Version

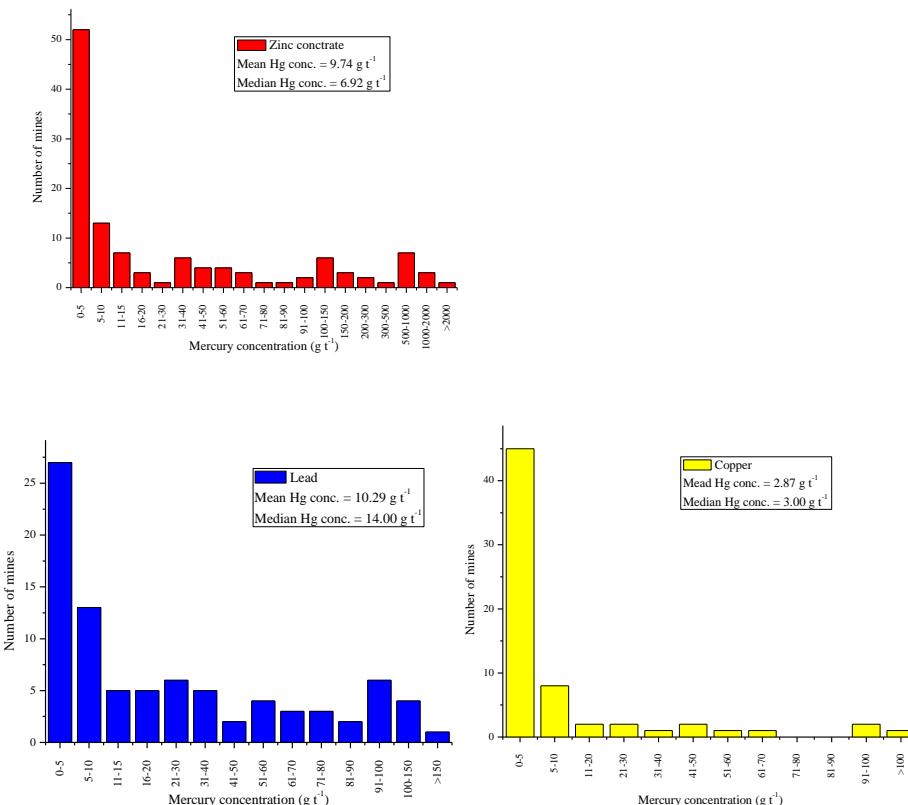
Interactive Discussion

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

Metal	Smelting Process	Mercury emission factor (g t^{-1})										
		A ^a	B ^a	C ^a	D ^a	E ^a	F ^a	G ^a	H ^a	I ^a	K ^a	L ^a
Zinc	— ^b	8–45	25	20		86.6	7.5–8	16.61	7			7.82
	EP with MRT									5.7	0.5	0.59
	EP without MRT									31	0.57	9.75
	RZSP									34		6.16
	EZF											13.80
	ISP									122	2.98	6.02
	AZSP				79/155					75		45.75
Lead	— ^b	2–4	3	3		43.6	3	14.91	3			10.97
	RPSP										1.00	1.19
	SMP										0.49	10.16
	SPP											29.35
	ISP											6.07
Copper	— ^b		10			9.6	5–6	6.72	5			0.85
	FFSP										0.23	7.91
	RPSP										0.09	0.28
	IFSP											1.07
	EF/RF											14.96
	RLEP											0.38

^a A: Nriagu et al. (1988); B: Pirrone et al. (1996); C: Pacyna et al. (2002); D: Feng et al. (2004);


E: Streets et al. (2005); Wu et al. (2006); F: Pacyna et al. (2006); G: Hylander and Herbert (2008);

H: Pacyna et al. (2010); I: Li et al. (2010); J: Wang et al. (2010); K: Zhang et al. (2012); L: This study;

^b Not specific value for each process.[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

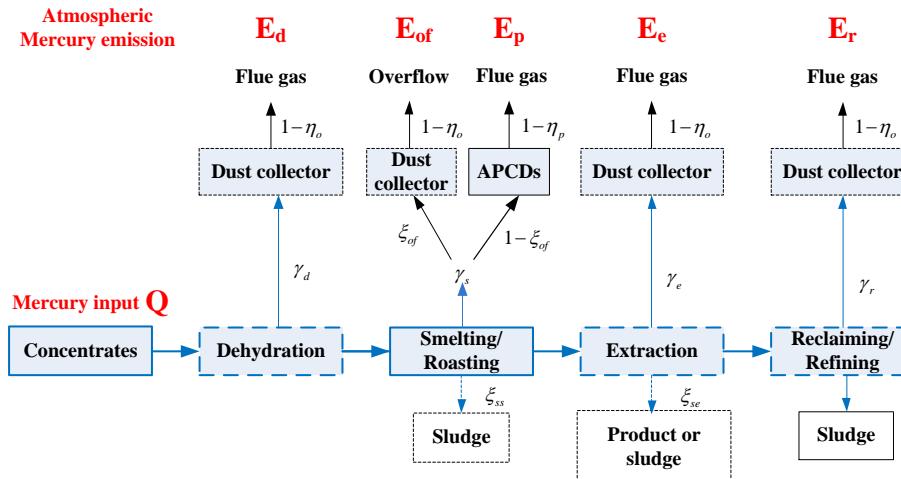
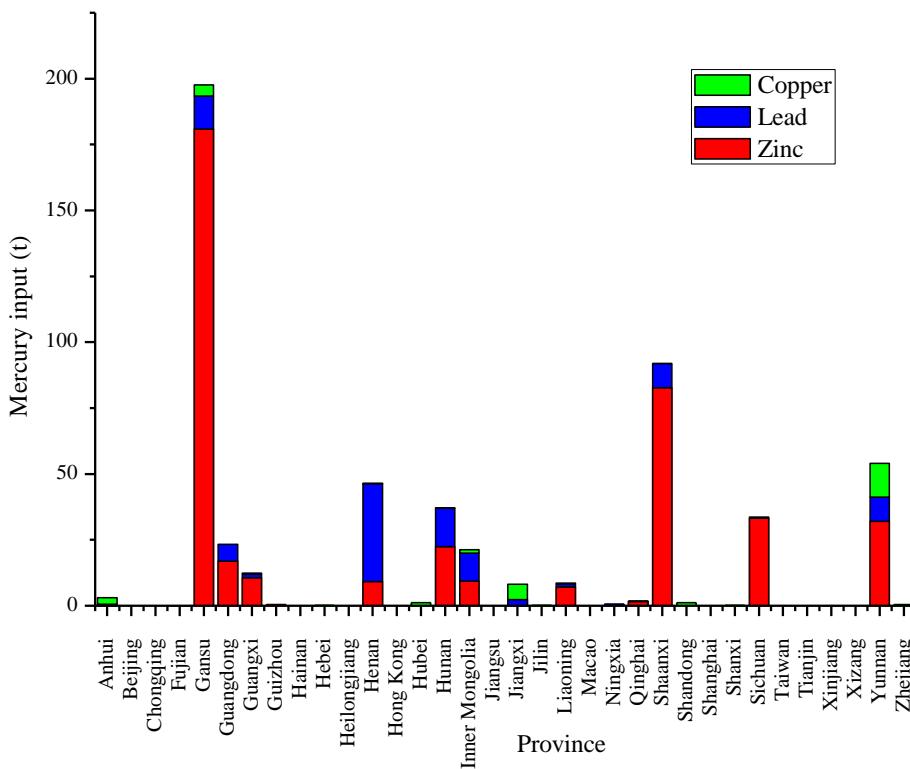

Q. R. Wu et al.

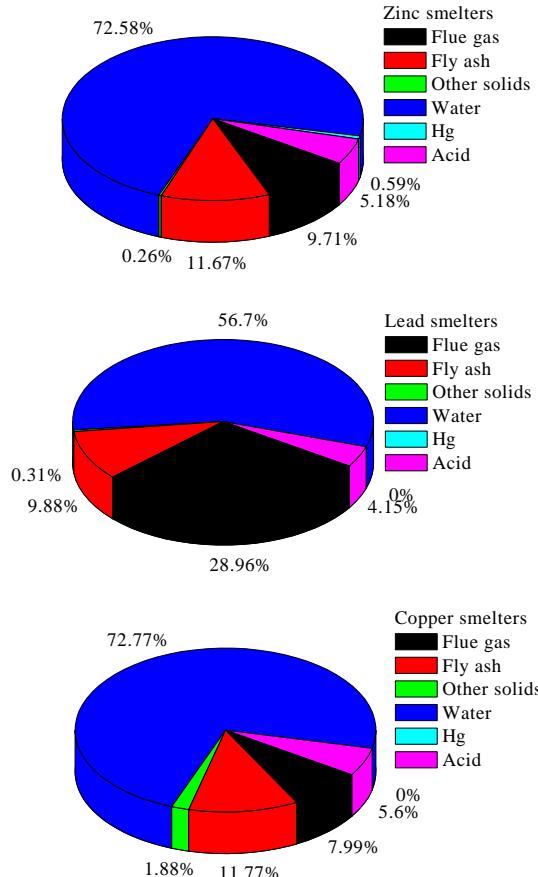
Fig. 1. Histograms showing number of Chinese mines in certain range of mercury content.

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

Fig. 2. Flow diagram for nonferrous metal smelters.


Title Page	
stract	Introduction
clusions	References
ables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	


[Printer-friendly Version](#)

Interactive Discussion

**Mercury emissions
from China's primary
zinc, lead and copper
smelters, 2000–2010**

Q. R. Wu et al.

Fig. 3. Amount of mercury in the ore concentrates consumed by each province in 2010.

Fig. 4. Fate of mercury in China's zinc, lead and copper smelters.

Q. R. Wu et al.

Title Page

Abstract

Introduction

Conclusion:

Reference

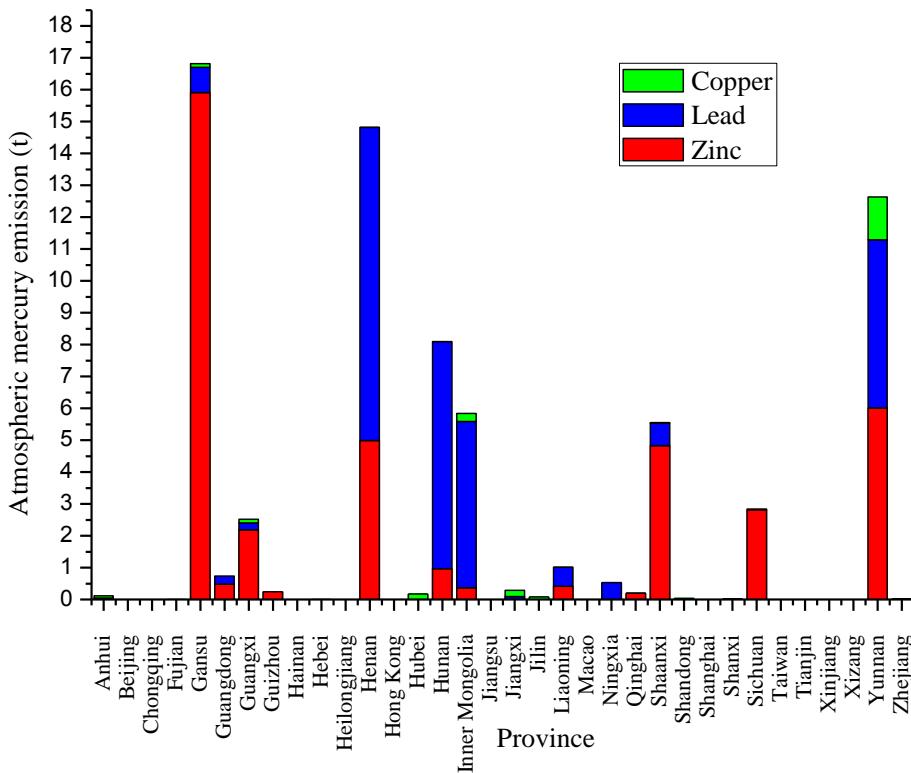
Tables

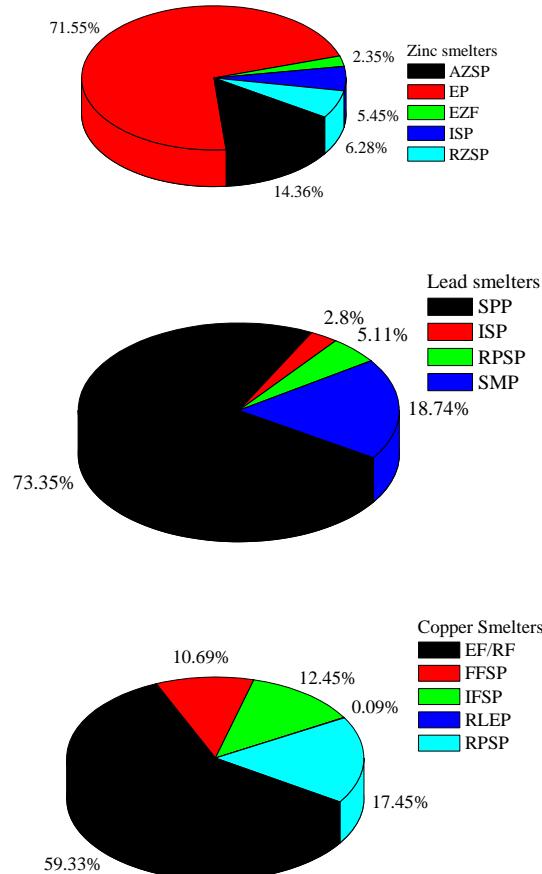
Figures

1

1

1


Bac


Close

Full Screen / Esc

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

Fig. 5. Atmospheric mercury emission from zinc, lead and copper smelters by province, 2010.

Fig. 6. Atmospheric mercury emission from zinc, lead and copper smelters by process, 2010.

Q. R. Wu et al.

Title Page

Abstract

Introduction

Conclusion

References

Tables

Figures

1

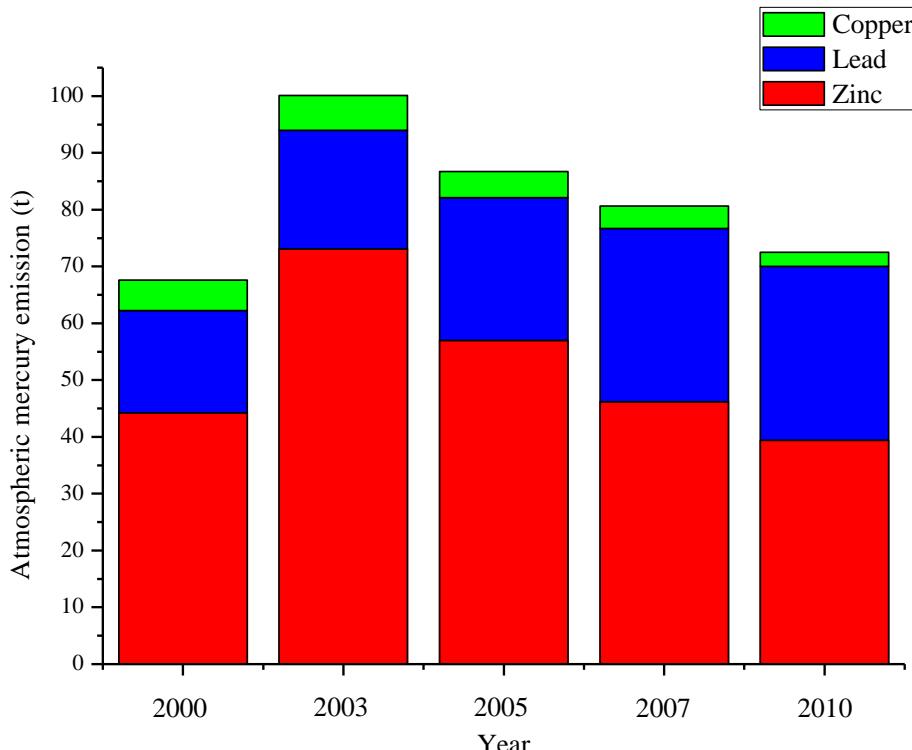
1

◀

▶

Back

Close


Full Screen / Esc

Printer-friendly version

Interactive Discussion

Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

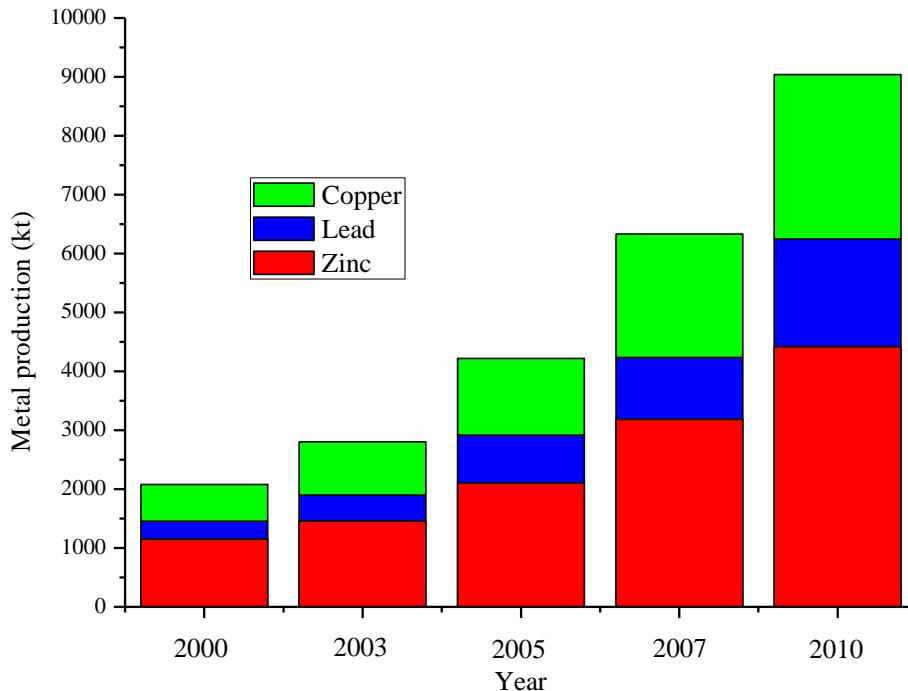
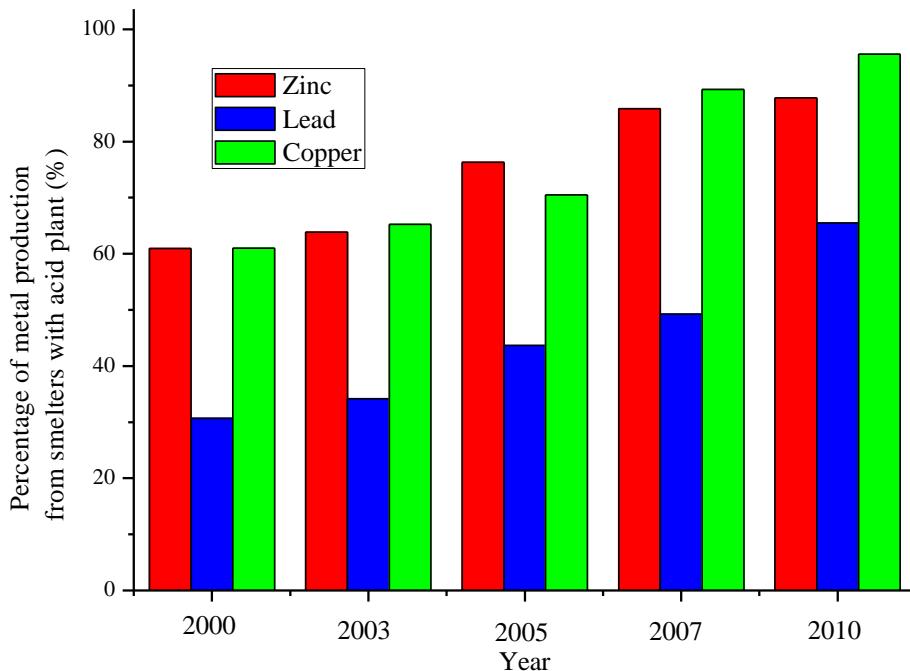


Fig. 7. Historical changes of atmospheric mercury emission from primary nonferrous metal smelters in China, 2000–2010.

- [Title Page](#)
- [Abstract](#) [Introduction](#)
- [Conclusions](#) [References](#)
- [Tables](#) [Figures](#)
- [◀](#) [▶](#)
- [◀](#) [▶](#)
- [Back](#) [Close](#)
- [Full Screen / Esc](#)
- [Printer-friendly Version](#)
- [Interactive Discussion](#)


Mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010

Q. R. Wu et al.

Fig. 8. Historical changes of metal production from primary nonferrous metal smelters in China, 2000–2010.

- [Title Page](#)
- [Abstract](#) [Introduction](#)
- [Conclusions](#) [References](#)
- [Tables](#) [Figures](#)
- [◀](#) [▶](#)
- [◀](#) [▶](#)
- [Back](#) [Close](#)
- [Full Screen / Esc](#)
- [Printer-friendly Version](#)
- [Interactive Discussion](#)

Fig. 9. Historical changes of the percentage of metal production from smelters with acid plants, 2000–2010.